Exporters
The content of this page may be outdated and some links may be invalid.
A newer version of this page exists in
English. To see the changes to the English page since this page was last updated: visit
GitHub compare
546f3e88..5db74ea6
and search for
More information ...
content/en/docs/languages/python/exporters.md
.
Send telemetry to the OpenTelemetry Collector to make sure it’s exported correctly. Using the Collector in production environments is a best practice. To visualize your telemetry, export it to a backend such as Jaeger, Zipkin, Prometheus, or a vendor-specific backend.
Available exporters
The registry contains a list of exporters for Python.
Among exporters, OpenTelemetry Protocol (OTLP) exporters are designed with the OpenTelemetry data model in mind, emitting OTel data without any loss of information. Furthermore, many tools that operate on telemetry data support OTLP (such as Prometheus, Jaeger, and most vendors), providing you with a high degree of flexibility when you need it. To learn more about OTLP, see OTLP Specification.
This page covers the main OpenTelemetry Python exporters and how to set them up.
Note
If you use zero-code instrumentation, you can learn how to set up exporters by following the Configuration Guide.
OTLP
Collector Setup
Note
If you have a OTLP collector or backend already set up, you can skip this section and setup the OTLP exporter dependencies for your application.
To try out and verify your OTLP exporters, you can run the collector in a docker container that writes telemetry directly to the console.
In an empty directory, create a file called collector-config.yaml
with the
following content:
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
exporters:
debug:
verbosity: detailed
service:
pipelines:
traces:
receivers: [otlp]
exporters: [debug]
metrics:
receivers: [otlp]
exporters: [debug]
logs:
receivers: [otlp]
exporters: [debug]
Now run the collector in a docker container:
docker run -p 4317:4317 -p 4318:4318 --rm -v $(pwd)/collector-config.yaml:/etc/otelcol/config.yaml otel/opentelemetry-collector
This collector is now able to accept telemetry via OTLP. Later you may want to configure the collector to send your telemetry to your observability backend.
Dependências
Se você deseja enviar dados de telemetria para um endpoint OTLP (como o OpenTelemetry Collector, Jaeger ou Prometheus), você pode escolher entre dois protocolos diferentes para transportar seus dados:
Comece instalando os pacotes do exporter necessários como dependências do seu projeto antes de prosseguir.
pip install opentelemetry-exporter-otlp-proto-http
pip install opentelemetry-exporter-otlp-proto-grpc
Uso
Em seguida, configure o exporter para apontar para um endpoint OTLP no seu código.
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry import metrics
from opentelemetry.exporter.otlp.proto.http.metric_exporter import OTLPMetricExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
# Nome do serviço é necessário para a maioria dos backends
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
tracerProvider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="<traces-endpoint>/v1/traces"))
tracerProvider.add_span_processor(processor)
trace.set_tracer_provider(tracerProvider)
reader = PeriodicExportingMetricReader(
OTLPMetricExporter(endpoint="<traces-endpoint>/v1/metrics")
)
meterProvider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(meterProvider)
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry import metrics
from opentelemetry.exporter.otlp.proto.grpc.metric_exporter import OTLPMetricExporter
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader
# Nome do serviço é necessário para a maioria dos backends
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
tracerProvider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(OTLPSpanExporter(endpoint="seu-endpoint-aqui"))
tracerProvider.add_span_processor(processor)
trace.set_tracer_provider(tracerProvider)
reader = PeriodicExportingMetricReader(
OTLPMetricExporter(endpoint="localhost:5555")
)
meterProvider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(meterProvider)
Console
Para depurar sua instrumentação ou ver os valores localmente em desenvolvimento, você pode usar exporters que escrevem dados de telemetria no console (stdout).
O ConsoleSpanExporter
e o ConsoleMetricExporter
estão inclusos no pacote
opentelemetry-sdk
.
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, ConsoleSpanExporter
from opentelemetry import metrics
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader, ConsoleMetricExporter
# Nome do serviço é necessário para a maioria dos backends,
# e embora não seja necessário para exportação no console,
# é bom definir o nome do serviço de qualquer maneira.
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
tracerProvider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(ConsoleSpanExporter())
tracerProvider.add_span_processor(processor)
trace.set_tracer_provider(tracerProvider)
reader = PeriodicExportingMetricReader(ConsoleMetricExporter())
meterProvider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(meterProvider)
Nota
Existem predefinições de temporalidade para cada tipo de instrumentação. Essas
predefinições podem ser definidas com a variável de ambiente
OTEL_EXPORTER_METRICS_TEMPORALITY_PREFERENCE
, por exemplo:
export OTEL_EXPORTER_METRICS_TEMPORALITY_PREFERENCE="DELTA"
O valor padrão para OTEL_EXPORTER_METRICS_TEMPORALITY_PREFERENCE
é
"CUMULATIVE"
.
Os valores disponíveis e suas configurações correspondentes para esta variável de ambiente são:
CUMULATIVE
Counter
:CUMULATIVE
UpDownCounter
:CUMULATIVE
Histogram
:CUMULATIVE
ObservableCounter
:CUMULATIVE
ObservableUpDownCounter
:CUMULATIVE
ObservableGauge
:CUMULATIVE
DELTA
Counter
:DELTA
UpDownCounter
:CUMULATIVE
Histogram
:DELTA
ObservableCounter
:DELTA
ObservableUpDownCounter
:CUMULATIVE
ObservableGauge
:CUMULATIVE
LOWMEMORY
Counter
:DELTA
UpDownCounter
:CUMULATIVE
Histogram
:DELTA
ObservableCounter
:CUMULATIVE
ObservableUpDownCounter
:CUMULATIVE
ObservableGauge
:CUMULATIVE
Definir OTEL_EXPORTER_METRICS_TEMPORALITY_PREFERENCE
para qualquer valor
diferente de CUMULATIVE
, DELTA
ou LOWMEMORY
registrará um aviso e definirá
esta variável de ambiente como CUMULATIVE
.
Jaeger
Backend Setup
Jaeger natively supports OTLP to receive trace data. You can run Jaeger in a docker container with the UI accessible on port 16686 and OTLP enabled on ports 4317 and 4318:
docker run --rm \
-e COLLECTOR_ZIPKIN_HOST_PORT=:9411 \
-p 16686:16686 \
-p 4317:4317 \
-p 4318:4318 \
-p 9411:9411 \
jaegertracing/all-in-one:latest
Usage
Now following the instruction to setup the OTLP exporters.
Prometheus
To send your metric data to Prometheus, you can either
enable Prometheus’ OTLP Receiver
and use the OTLP exporter or you can use the Prometheus exporter, a
MetricReader
that starts an HTTP server that collects metrics and serialize to
Prometheus text format on request.
Backend Setup
If you have Prometheus or a Prometheus-compatible backend already set up, you can skip this section and setup the Prometheus or OTLP exporter dependencies for your application.
You can run Prometheus in a docker container,
accessible on port 9090
by following these instructions:
Create a file called prometheus.yml
with the following content:
scrape_configs:
- job_name: dice-service
scrape_interval: 5s
static_configs:
- targets: [host.docker.internal:9464]
Run Prometheus in a docker container with the UI accessible on port 9090
:
docker run --rm -v ${PWD}/prometheus.yml:/prometheus/prometheus.yml -p 9090:9090 prom/prometheus --enable-feature=otlp-write-receive
When using Prometheus’ OTLP Receiver, make sure that you set the OTLP endpoint
for metrics in your application to http://localhost:9090/api/v1/otlp
.
Not all docker environments support host.docker.internal
. In some cases you
may need to replace host.docker.internal
with localhost
or the IP address of
your machine.
Dependências
Instale o pacote de exporter como uma dependência para sua aplicação:
pip install opentelemetry-exporter-prometheus
Atualize sua configuração do OpenTelemetry para usar o exporter e enviar dados para seu backend Prometheus:
from prometheus_client import start_http_server
from opentelemetry import metrics
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
# Nome do serviço é necessário para a maioria dos backends
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
# Iniciar cliente Prometheus
start_http_server(port=9464, addr="localhost")
# Inicializar PrometheusMetricReader que puxa métricas do SDK
# sob demanda para responder a solicitações de extração
reader = PrometheusMetricReader()
provider = MeterProvider(resource=resource, metric_readers=[reader])
metrics.set_meter_provider(provider)
Com o código acima, você pode acessar suas métricas em http://localhost:9464/metrics. O Prometheus ou um OpenTelemetry Collector com o receptor Prometheus pode extrair as métricas deste endpoint.
Zipkin
Backend Setup
If you have Zipkin or a Zipkin-compatible backend already set up, you can skip this section and setup the Zipkin exporter dependencies for your application.
You can run Zipkin on in a Docker container by executing the following command:
docker run --rm -d -p 9411:9411 --name zipkin openzipkin/zipkin
Dependências
Para enviar seus dados de rastro para o Zipkin, você pode escolher entre dois protocolos diferentes para transportar seus dados:
Instale o pacote de exporter como uma dependência para sua aplicação:
pip install opentelemetry-exporter-zipkin-proto-http
pip install opentelemetry-exporter-zipkin-json
Atualize sua configuração do OpenTelemetry para usar o exporter e enviar dados para seu backend Zipkin:
from opentelemetry import trace
from opentelemetry.exporter.zipkin.proto.http import ZipkinExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
zipkin_exporter = ZipkinExporter(endpoint="http://localhost:9411/api/v2/spans")
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(zipkin_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
from opentelemetry import trace
from opentelemetry.exporter.zipkin.json import ZipkinExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.resources import SERVICE_NAME, Resource
resource = Resource(attributes={
SERVICE_NAME: "nome-do-seu-serviço"
})
zipkin_exporter = ZipkinExporter(endpoint="http://localhost:9411/api/v2/spans")
provider = TracerProvider(resource=resource)
processor = BatchSpanProcessor(zipkin_exporter)
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)
Custom exporters
Finally, you can also write your own exporter. For more information, see the SpanExporter Interface in the API documentation.
Batching span and log records
The OpenTelemetry SDK provides a set of default span and log record processors, that allow you to either emit spans one-by-on (“simple”) or batched. Using batching is recommended, but if you do not want to batch your spans or log records, you can use a simple processor instead as follows:
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
processor = SimpleSpanProcessor(OTLPSpanExporter(endpoint="seu-endpoint-aqui"))
Feedback
Was this page helpful?
Thank you. Your feedback is appreciated!
Please let us know how we can improve this page. Your feedback is appreciated!